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* Abstract II. Dynamic Programming, the DFT, and the FFT

I have selected three classical problems - dis- The DFT certainly constitutes one of the corner-

Crete Fourier analysis, linear prediction, and nonlin- stones of modern Fourier analysis. Its uses range over
ear phase and frequency demodulation - to illustrate the entire spectrum (so to speak) of signal processing
the use of dynamic programming in control and signal applications. American Microsystems now markets a pro-
processing. The first two problems illustrate the use grammable signal processor chip with 256 16-bit words
of dynamic programming in the (re-) derivation of the of RAM and 256 17-bit words of RON that performs 3
FFT and Levinson algorithms, two of the best known and million 12 bit x 12 bit multiplies each second. Thie
most widely used fast algorithms. The last problem chip can be programmed to perform 600 32-point complex
illustrates how dynamic programming can provide comfort FFTs each second. With bit-slice -icomputer architec-
in those applications where recursively computable, tures or special purpose random logic, one can probably
finite-dimensional sufficient statistics are nowhere realize something like 25,000 256-point conplex FFTs
to be found, each second. Specinl purpose FFT butterf]v chips no

doubt exist. What this means is that DFT analysis in

1. Introduction
2  control and signal processing problems can be carried~out in real-time.

When I was a graduate student at the University
of Washington in the late 1960s, the control students The DFT is a mapping, DFT:Xn 0 fm' , that
studied dynamic programming and the communication stu- t h c in nN-

dents didn't. I didn't. In the early 1970s, while n O mu

covering a controls class for one of my colleagues at according to the rule
Colorado State University, I was forced to work through N-1
one of those classical dynamic programming problems XI = Z x n , m-O,l,...,N-I
involving a weary salesman, a balky statlonwago4 and k n N
a sales territory as big as the whole outdoors. I -j2s/N
remember finding the insights and techniques of dynamic WN - e
programming interesting. I remember finding the prob-
lem fun to work. But I do not remember thinking, "... Noting that W 

N  
- I Vm, we may write X as follows:

here is a generally applicable technique that can make
my life in signal processing easier." NZI m(N-n

-= n mN-n
In the mid-1970s I read a paper by Charles Cahn n"O

[1] concerning the so-called Viterbi algorithm and its This calculation may be viewed as the limit of the
application to PH demodulation. The idea was to extend following sequence of imbedded approximations (acormon
the threshold in FM by demodulating with delay, using dynamic programming trick):
an adaptation of dynamic programming. Slowly but
surely I began to realize that traveling salesmen prob- (k) k -1
lems (and traveling salesmen, too) come in many guises. m m(kn) k=l,2,....N
I now believe dynamic programming has a rble to play n0nO
in a variety of classical nonlinear filtering problems Note X(k) obeys the following recursion:
involving the demodulation of phase and frequency m
modulated data. This is one of the points I hope to (k+l) N-m x(k) -m
make. N n +kN Xk

(N) (1) . m
If you are a control theorist who has grown up X m m 0 N

with dynamic programming you may be thinking my experi-
ences with dynamic programming are rather too provin- This is the so-called Goertzel algorithm for obtaining
clal to be at all typical. Without presuming to speak the mth OFT variable, X , as the output of a digital
for my colleagues, let me at least offer the following, filter excited by the sequence {X -. Te output of
In 1967 Andrew Viterbi published what was to become a n O
prize-winning, and very influential, paper in the IT the filter is read at time k-N. See Figure 1.
Transactions. The paper was titled "Error Bounds for
Convolutional Codes and an Asymptotically Optimum De- D namic Programming and the Decimation-in-freiuencv FFT
coding Algorithm 121". In this paper Viterbi derived .riL Coertzel algorithm is a nice dynamic program-
an algorithm (since dubbed the Viterbi algorithm) for ming-like solution for the DFT. However it is not
finding the most likely finite-state convolutional code efficient. Let's see if we can improve upon It. Con-
sequence, based on noisy data. As far as I know, the X(k)
Viterbi algorithm was not widely recognized as a for- aider m for even frequency indices m=2r:
ward dynamic programming algorithm until Forney pub- k-I
lished his account of it in 1973 r3]. X(k) - k x w-2r(k-n) k-1,2__,2r n N , -, .
1
This work supported in part by the Amy Research 

n-O

Office, Research Triangle Park, NC, and the Office of k-I
Naval Research, Washington, DC. - T x. WN/2 , k-l,2,....N2
In this section LLS is speaking. n-O
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This shows that the 2s-point DFT approximant X2r may

be obtained from two s-point approximents. By choosing
O-N 2 and continuing backwards In this way (for odd 1W

sub-indicos, as well) one arrives at a backward dynamic -da

programiming derivation of the decimation-in-frequency
FFT. See Figure 2 for an elementary representation of
a 4-point decimation in frequency FFT.
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Ill. Detection, Estimation. and Control 010
Structures in the AR(N) Case: Kalman [01
Filters, Levinson Recursions, and
Dynamic Programming X k  Aj I b- ' k +

Autoregressive (AR) models for signals, states, A-kl 0,
and data play a starring role in many areas of signal aN INi...
processing and control. By appropriately selecting k
model parameters (and order) one can model the covarl- Noisy Prediction and the Kalman Predictor
ance structure and spectral characteristics of more
general models. The so-called normal equations for The stationary Kalman one-step predictor for
identifying the parameters are elegant and easily the noisily observed AR(N) sequence is
solved with recursions of the Levinson-type.

R *'A + Kz k-
In this section we tie up control, prediction, k+l k

detection, and estimation in the special case where we x -i

.t e dealing with a zero-mean, wide-sense stationary, k k
scaler autoregressive time series. The usual state- where
variable and matrix block diagrams give way to scalar K - APC(C'PC + o

2
) 1

variables and digital filter blocks of moving average n

filters. The normal equations are high-lighted and klk()
dynamic programming Is used to derive the famous Levin- 2 .  kid
son recursions. P - (A-KC')P(A-KC-) + a2 KK' + 2 bb' (2)

n
Models The Kalman prediction sequence (x k+l for (z

kl k+1
Let {xk l denote a scalar zero-mean, wide-sense can be interpreted as the output of an ARMA(N,N-1)

filter, driven by the prediction error sequence
stationary autoregressive sequence that obeys the re- (v k=Zk- or an ARMA(N,N-1) filter driven by the obser-
cursion vation sequence {zk} The resulting filter equations

N are
x k  an Xk-n + V k

nl~~ ~ ~~ E. gk+ " £1a i'~ t. k+l-i
Ssequence of i.i.d. N(O, 2 ) r.v.s. 1  k+l-i + i

or
SIt Is easy to see that the covariance sequence (r}" N N

rm - r5m, associated with the sequence {x'k, obeys the 'k+1 -Z (a i-gi)ik- + gizk+l-i (3)
i-l~recursion

r where the coefficients, gt can be defired by the char-
N 2 acteristic polynomial A(k) of (A-KC'):

rm n m-n w m
n1N N

From here one may write out the so-called normal equa- 
A(-k) - + E (gj-ai)lNi

t ions: i=

r r a. r r See Figure 3 for a block diagram of this predictor.
0 1 rN-

1  
1 1 Note that the noise-free MA predictor filter ,next sec-

r1 r0  rL .. rN-2i 
2  r 2 

Nltion), E a z
-
n, is preserved in the feedback loop,

bunt t t r

rl L but that the residual sequence vk=k-x k Is now weighted
rN-1 r, ro aN rN N

with a feedforward M filter, E gnz-
If the (a N are known these equations are used to 

n-l

solve for the r I Conversely, if the frn) are Why is the noisy Kalman predictor ARMA and not MA?
known, these equations are used to solve for the (a N The answer is that (zk), a noisy version of an AR signal

n V process. obeys an ARMA(N,N) difference equation. As an
In much of what follows we will assume the sequence AR(N) model has an MA(N-l) predictor, it Is at least
(x k } is observed in zero-mean additive WGN: logical (if not intuitive) that an AMA(N,N) process has

Zk = k + nk V k an ARMA(N,N-l) predictor.

nit sequence of i.i.d. N(O,0n) r.v.s. The Noise Free Predictor

The companion form state model for all of this lhe prediction vector X consists of the terms
follows:.* 1

Xk+l ' A X + bu k txk-N+l
1

/k-l"

Ik-l/ZkZ l
'
k . ] | I

"Y klz-.... '
CkL j..

" -



2.hen oO then zk - xk V k andWhen~v 
-a. 

k 
£ a ixk-i

SEX k.,. ] - , n1,2.... This control is illustrated in Figures 3 as a feedback
• l.. loop running up the left side of the figure. The feed-

So in this case back loop to the top compute box shows how Xk would be

XkN+1  used for minimum variance control In the noisy case.

xk-N+2 Detection and the Likelihood Ratic

- Consider the hypothesis test H0 vs. H1 with

Xk HO : Zk nk , k-O,....K

Xk/k-I HI : zk xk + nk , k-O,l,..., K

- This test is equivalent to the test ft vs. h where
It follows that P. the covariance E[^kXk]kXk H Z

"I AO 40v() =zk :(,n )

,"0 ... 02
p-(4) H1 " N(O,p 0 +p ) ; p0 : variance of

and Vk zk - xk is the innovations sequence in the

. ou  Kalman filter. The log-likelihood ratio for this
Calculating K by substituting (4) into (1) one problem is

finds that A(A) - XN and hence g,-a,. This implies, as LR 1 K 2 1 2 2

one would expect, that the prediction filter (3) re- PO+a2 k- k kO k
duces to the purely movng average relation n n

N Thuk the statistics and Ez2 are sufficient and the
Xk+l l ai Zk+l±i log-likelihood ratio may be computed as in Figure 3.

Minimum Variance Control The Normal Equatios are Fundamental

One of the simplest control strategies is minimum It should be clear from Figure 3 that the AR coef-

variance regulation where one desires to minimize the ficients (an}1 characterizing the sequence (xk) are
variance of the AR(N) output sequence fxk} , and force fundamental to the implementation of control, predic-

E(xk)-O. The well known separation principle allows tion, and detection algorithms on noisily observed AR

one to generate a feedback control strategy assuming sequences. Unfortunately, sequences rarely come tagged
with their corresponding AR parameters. More typically

noisefree measurements, i.e. nk-0, and then use the finite records of them come to us and we estimate a
same strategy in the noisy case but with the Kalmn covariance function (or power spectrum), often by FFT-
filter estimates (') replacing the actual filter out- Ing, squaring and windowing, and inverse FFT-ing.

puts (xk}]. These estimates may then be used to solve for the coef-

Assume then we have the system ficients fan from the normal equations

N [r0  rN a [r1
xk 'i'leaix-i+wk+vk rl r0  [" 2 -r 2 (4)

where (v 1 is our feedback control sequence. We would

like to minimize rN-1 r0  a lNJ
2 N + w+vk) This makes the normal equatiois fundamental and arouses

i 1 1 X + k our interest In efficient ways of solving them.

- ( 2 + 2w N )  Dynamic Programing and Levinson's Algorithm
(w wk k iRewrite the normal equations as

2 MNZw a ixk-i) N N m
(k+i.1 Zl I cin. - rn . n'.2,. . ., (4a)

"(wk) + 2(wkvklvk)E(vk) These equations characterize the { 1}N that minimize

N N 2 the quadratic form
+ 2E(wk(iE ai'k-i) + E((Vk + t ai xk-i

)2)  
N N N

i L1 N - ro0 - 2. r r+ E F a rlnm
Since [wk) is uncorrelated with (xk ), il, and since i-1 n-I n Tn-m

.(wkVkiVk) - 0, it is clear that E(x2) is minimixed by The minimum Is

choonsing - - a Nr (4b)

N N 0



Assuming the normal equations to be non-singular, we N-1
way i r3 - n Nl

N 
N - n. a rN-n

N S rN N-I N-1
I S- 2. (5) r E E r N-1 T

M1. em nr 0 £ N-r. an N-n
rn-i n-i

S*N N N Let's call(e,.,r) -r 0  r r 8Nr (6)

0rt n-I (CN-i . - r a N--
Write out QN(-) as follows: n U-1 N- an

N-1 N-i N-1 and see if we can find a recursion for it. In the
()r-.....r)ro-2 9 ar-2 NrN+ E I a a rl1 .n aantime"U -1 l n-i nm1

N-i N-i

or- N ON-N N- 0 N
2N rn-

-O rl) ro nr - n rC n
""aNro2aNrNQ~(l-~aNrNli, •r _ - £ Cn-

(a i So the minimization of QN(rl...,rN) ith respect to Note

t o I ( l o a d s2 
N - i N -_

1 . N
IN 2 - N-i N - N-i* t Q(..... r)- Q(rl, ,w - C rN -aN(rin i Q "rM) n-i n-

mlN-i 14-IN - N. N n-i2 in..-- = QN..rN. L a 1 r. )-ON(TrN- % r)
minfaNrO-2NrN+ min QN- l-NrN -

V- N n-i n -n n-i -)
aN (%) 1N-

-I NI N-1 N-i

N-1 .L P " /mnlaNro-2,Nrl41 j_llrl-aNN_l,...) (7)u- n

aN So we have this recursion for the minimum prediction
error:

This eqUAtion contains the essence of dynamic program- N- .* m inp and the principle of opt ity: Once the ri -- C N-1

N-1 qN N N-nI " "'N- 
n  

N-n
a . .. N) e found, R-i may be constructed and

M4 found as a function of roarN end (a,.... }. Now use (4b) to get
No -. I' V-I

One continues in this way. At each step of the way N N N-i N-i N N-I N N-1
rIr -Ea r-ar+I an t

the minimization problem on Q._I(.) is quadratic. 0-1 a rn-i a r N N + N N-n

Or
Let's use (6) in the HIES of (7): N-i N-l
N 2 N N-1 -a N

- ina Nr 0 - 2aNrN + T I a r - I (am -N a )rm
aiN W- s mN- N

N-1 N-i Thus from the recursion on QN we get this recursion for
- I I(r•-a*r N ) SN-i(rn-yr,)] the a:

rn-i n-i-

2 N-1 1N-i a - -a N N-1

minfaN(rO - E I 
r N- m  r N-n a N *m  N

aN .i N- s n Our one remaining problem is C . Write it as

N-i N-1 N-I N N N
-2r(r N  S n) m £ reel r n-i a ni! an rNl-nm ;-N-) -

+ qN.(r,...,rNl)J Thus CN must be the solution of

It follows easily that the minimizing value of a is N
N cN

t CM 'n~a r,,~., n-1.2 ..... N-1 (9)

r N I ra So M-n It therefore satisfies a recursion just like a In
a V.- SPi:.I

N " -i N-i fact (9) is just (4a) with the RIS vector turned upside
rO " N' m -n rN-n down. By the symmstry of R - (rl 1 1nl), this simply

s-i turns the solution vector iaN ) upside down. Thus

Use (5) in the numrator to get

aid we are done.

Suary: The Levimson recursions may aom be written

4



-11N-i N-i K-i N-I

aN-rN - =E n r1~ f( U {SkN+t )0  w. ))

N N-i N-i k-O

r0 t-i 
a N-n 

r
N-n  

Exploit the structure of ( k  and (w kN to write this

as
aN aN-i N N-i
N 0 - ON 'N-m l, . K-i N-i j kNl(kN+) 2 K-1

N N-1 N N-i1 f(.,) - w s N (e .r) 1 f(-0k/(k-l)N
Q Q-1 - N (rN E aN-

1
r )k-0 L0 ZkN- k0

im The natural logarithm of f(.,.) is proportional to

To get these equations into their fully modern form, K-1 N-i -jWkN (kN+Z)
one must look at a backwards prediction. tnf(-,-)-2Re 1 e

2 k-O t -

IV. Frequency Tracking and Dynamic Programing 
n K-

Phase and frequency tracking problems comprise + E in f(. kN/w(k-)N)
some of the most nettlesome nonlinear filtering prob- k-O
lems in the entire realm of signal processing and com-
munication. A typical problem is the following:
observe the sequence (zk) with

zk = sk *k o

5
k - k kko k c

and estimate the FM sequence (wk). Here k - is T
Sk a ia randomly frequency modulated signal. The sequence ' . a a'

n.} is additive noise and {wk} is a sequence of angular

frequencies. Assume nk:N(O,o) (complex normal).

We wish to observe a record of data (zk}O
K 

and ,

infer the most likely sequence of frequencies, IL 10I
For our model of (wk) we'take each wk (0,2/Q,....

2,r(Q-1)/Q), evolving according to L. 1"
wkN - W(k-I)N + 'kN

4WkN+1 " 'kN - 1-0,1,..N-i V ktX,~

A typical sequence (w kI is illustrated in Figure 4. The
independent increments sequence (vkN) is a sequence of, ./,Lt
i.i.d. r.v.s. selected in such a way that the transition
probabilities

al ( ykN/y (k-l) No

correspond to our notion of physical reality. Physi-cally we may think of the sequence (w k RI as a finite- o • _ I I .__._

state random walk on the circle with an unusual transi-
tion probability structure. Typical trajectories for

Jwkk

(Wk
} 
and (sk-e k are illustrated in Figure 4.

Let's Organize the sequence {zk}O a into contiguous

N-iblocks of length N, of the form (z kN+1.}I.O See Figure

5. Recall

ZkN+ " - e +JlkN++(kN) + n

- W + nkN+t

KN K-i N-i
Write (z k - U {z kN+X OI Consider the joint den-

KN k -I Figure S. Data Processing and Frequency Trelliss kty of (zk end (kO : Illustrating Evolution of Surviving
Frequency Tracks

*1 6



K-1 -jw M -1 -jwk~t to zero-pad (xkN+,t) oobai1
1n(,)2e - ooti Q-point sequenlce
T
2  

0kN+Le that can be FFT'd to get XkN(e-2r/Q). See Figure 5.

Then for each node on Figure 5 we evaluate .M(0-2rr/Q),
N-1

+ Z Lnf(wkN/W(k_)N) and find the best route through the trellis with a
k-O dynamic programming algorithm. This completes our

algorithm for moderating the usual peak-picking rule on
Let XkN(O) denote the finite Fourier transform the FFT with prior information f( IkN/W(k-i)N).

( N-1 je ReferencesX kN (e )  - Z zkN + l e 
j t R e r n s

tee [11 C. R. Cahn, "Phase Tracking and Demodulation with

Then the log-likelihood function may be written Delay," IEEE Trans. Inform. Theory, IT-20, pp. 50-
-)-2Re- 1 K-1 e-jMkN (- ) 58 (January 1974).

2nf(-, - k Ik [2] A. J. Viterbi, "Error Bounds for Convolutional
2.2 k!Oe_.'!n Codes and an Asymptotically Optimum Decoding

1 1 4 N-1 Algorithm." IEEE Trans. Inform. Theory, IT-13,
W + E Inf(kN/,.(k-l)N) pp. 260-269 (April 1967).

k-O [3] G. D. Forney, Jr., "The Viterbi Algorithm", Froc.
Our notion of the most likely sequence {Wk)O is IEEE, 61, pp. 268-278 (March 1973).

the sequence

kN+t= , tO,1,2,.,N- , k-O,l,...,K-I

K-1
where (wkN} 0  is the sequence that maximizes f(.,.).

4 Thus we consider the maximization problem

max -- Re E a

(WIK-1 02 k-O
kNK

K-1
+ X tnf(w kN /W(k-l)N)
k-O

Write this as

max r
( -I K-1
{WkN}l

with r satisfying the following recursion:

- rt +tnf(wtN/W(t _) )+ - Re e-JwtstNXtN(8" .kN-

a 
'

So our maximization problem becomes -41"

max Ki[max K-2 inf(w(K-1)N/ (K-2)N) +- d

{ukN K-2 (WkM)0

(4 +
°
-L Re e..(K..)N' (... .- .. _

This form leads to the following observation: the ' ."., -,'

maximizing frequency trajectory, call it passing

through w (K.2)N on its way to w (K)N' must arrive st

(K-2)N along a route (w kN )3 that lnsximizes-r K-2 *
If it did not we could retain ;(K-2)N and (KI)N and

with a different sequence to get a larger rK 1' It is , l
this observation that form the basis of forward -
dyamic programing.

Recall the W M c(2r/Q) -1. This means the

finite Fourier transform XkN(e) must only be evaluated

on O-2wr/Q, t.Ol,...,Q-l. The best way to do this iS

7
.-4 -


